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Abstract—Despite the development of numerous visual analytics tools for event sequence data across various domains, including but
not limited to healthcare, digital marketing, and user behavior analysis, comparing these domain-specific investigations and transferring
the results to new datasets and problem areas remain challenging. Task abstractions can help us go beyond domain-specific details, but
existing visualization task abstractions are insufficient for event sequence visual analytics because they primarily focus on multivariate
datasets and often overlook automated analytical techniques. To address this gap, we propose a domain-agnostic multi-level task
framework for event sequence analytics, derived from an analysis of 58 papers that present event sequence visualization systems. Our
framework consists of four levels: objective, intent, strategy, and technique. Overall objectives identify the main goals of
analysis. Intents comprises five high-level approaches adopted at each analysis step: augment data, simplify data, configure data,
configure visualization, and manage provenance. Each intent is accomplished through a number of strategies, for instance, data
simplification can be achieved through aggregation, summarization, or segmentation. Finally, each strategy can be implemented by a
set of techniques depending on the input and output components. We further show that each technique can be expressed through
a quartet of action-input-output-criteria. We demonstrate the framework’s descriptive power through case studies and discuss its
similarities and differences with previous event sequence task taxonomies.

Index Terms—Task Abstraction, Event Sequence Data

1 INTRODUCTION

Event sequence data contains a wealth of knowledge, but because of
their complexity, it can be challenging for analysts to extract useful in-
sights. Numerous visual analytics systems for event sequence data have
thus been developed, each tailoring to particular application domains.
For instance, Tipovis [26] assists developmental psychology researchers
in the visual analysis of children’s behavioral patterns. In clickstream
analysis, tools such as Patterns and Sequences [43], Coreflow [42], and
Segmentifier [11] enable market analysts to explore and understand
customer journeys. SessionViewer [36] helps analysts examine web
session logs. Careflow [50], DecisionFlow [17], OutFlow [18, 66], and
Cadence [19] help healthcare researchers in identifying trends in patient
treatment histories and support clinical decision-making.

These tools vary in application domains, objectives, and techniques.
Some tools focus on sequence comparison [26, 55, 72], while others
emphasize overview generation [64, 67], pattern exploration [42, 51]
or finding similarities [47, 65] across sequences. These tools utilize
various techniques, such as sequence alignment [5, 72], pattern mining
[42, 43, 63], rule-based exploration [9] and novel visual encodings
[62]. Although these domain-specific investigations sometimes hint
at the possibility of wider applicability (e.g., [19, 42]), the diversity
of objectives and techniques presents challenges in generalizing the
findings, comparing tools developed for different applications, and
transferring knowledge across domains.

The development of task frameworks has consistently been instru-
mental in advancing the field of data visualization, however, existing
frameworks [2,7,59,61,70] fall short of fully capturing the unique chal-
lenges associated with event sequence data. First, most of these frame-
works assume a multivariate data model, overlooking the complexi-
ties of event sequence data [5], such as high dimensionality and time
variance [32]. Second, they focus mostly on visualization tasks, but
event sequence analytics employ visualization in conjunction to pattern
mining, unsupervised learning, and data transformation. We need an in-
tegrative task framework accounting for all types of techniques. To date,
only a few attempts have been made to describe the task space of event
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sequence visual analytics [14, 49, 52]. However, they tend to mix task
descriptions of different levels of granularity in a single taxonomy and
do not fully capture the complexities of event sequence analysis tasks.

Inspired by previous works [7, 56] highlighting the multi-
dimensional and multi-level nature of visualization tasks, we present a
comprehensive end-to-end task framework for event sequence analysis,
capturing the analysis process from data preprocessing to provenance
tasks. Derived from an extensive analysis of 58 papers, our framework
consists of four levels (objective, intent, strategy, and technique), each
capturing a different level of abstraction.

The highest level, objectives, represents overarching goals such
as cohort comparison, anomaly detection, and identifying common
behavior. To achieve these objectives, users form specific intents
at each analysis step. We identify five high-level intents: augment
data, simplify data, configure data, configure visualization, and man-
age provenance. Each intent is realized through a set of strategies,
which define the methods used to accomplish the intent. For instance,
data simplification can be achieved through aggregation, summariza-
tion, or segmentation strategies. Finally, techniques are specific
implementations of each strategy, expressed as a quartet of dimensions:
the action performed, input data components, desired output compo-
nents, and criteria specifying the parameters or conditions for the action.
By organizing tasks into this hierarchical structure with multidimen-
sional characterization at the technique level, our framework bridges the
gap between high-level objectives and low-level techniques, providing
a comprehensive and systematic approach to event sequence analysis.

We evaluate the expressiveness and precision of our framework
by comparing it with existing task abstractions for event sequences
[14, 49, 54] through case studies, and discuss its implications for future
research on event sequence visual analytics.

2 RELATED WORK

We first review task taxonomies for interactive visualizations and their
limitations in describing event sequence visual analysis. Then we
discuss existing works that discuss tasks in event sequence data.

2.1 Task Abstractions for Visualizations
Numerous theoretical abstractions of visualization tasks have been
proposed, including but not limited to: Shneiderman’s data types by
tasks taxonomy [59], Amar et al.’s low-level analytic tasks [2], Valiati
et al.’s formulation encompassing analytic, cognitive, and operational
tasks to guide evaluation and design of multidimensional data visualiza-
tions [61], Schulz et al.’s design space for visualization task [57], An-
drienko and Andrienko’s exploratory data analysis tasks [3], Yi et al.’s
categorization of user intents in interactive visualization [70], and Heer
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and Shneiderman’s taxonomy of interactive tasks in visual analysis [27].
These taxonomies, however, mostly focus on a single level of abstrac-
tion, and some of them mix low-level actions with high-level goals.

Researchers have argued that tasks are complex theoretical con-
structs and cannot be fully understood along a single dimension or
at a single level of abstraction. Rind et al. propose the idea of task
cube to capture the multi-dimensional nature of visualization tasks [56].
Gotz and Zhou [20] present a hierarchy of tasks, sub-tasks, actions,
and events to characterize user behavior in visual analytics at multiple
degrees of semantic granularity. Brehmer and Munzner [7] introduce a
multi-level typology for abstract visualization tasks. The typology is
organized around three key questions: why the task is performed, how
it is executed, and what the task inputs and outputs are. By utilizing
several levels of abstraction, the typology facilitates a more system-
atic analysis and comparison of visualization tasks across tools and
domains. Building upon Brehmer and Munzner’s work, Lam et al. [37]
derive a framework based on the analysis of design study papers for
mapping high-level analysis goals and low-level visualization tasks.
Our task framework is inspired by these works’ emphasis on the multi-
granularity and multi-dimensionality of tasks.

These task abstraction frameworks, designed primarily for multi-
variate data visualization and analysis, are not readily applicable to
event sequence visual analytics due to two main reasons. First, event
sequence analysis possess unique complexities, including temporal
ordering of events within sequences, and sequences having their own
attributes. Additionally, sequences can be grouped into cohorts or
divided into segments based on various criteria. These hierarchical
complexities and temporal relationships are not addressed in multi-
variate visualization frameworks [60]. Consequently, event sequence
analysis requires a broader set of techniques and a closer examination of
the what aspects of user actions. For instance, filtering in multivariate
datasets is unambiguously about filtering data items based on attribute
values, whereas in event sequence analysis, filtering can target various
components (e.g., filtering events by frequency, filtering sequences
based on milestone events, filtering sequences by sequence attribute)

Second, previous works on task abstraction primarily focus on visu-
alization tasks and do not adequately cover the wide range of machine
learning and data transformation tasks that are crucial in event sequence
analytics. For instance, pattern mining techniques are frequently em-
ployed to discover recurring event subsequences, and clustering algo-
rithms are used to group similar sequences together. Data transfor-
mation tasks, such as attribute or value based filtering, sequence seg-
mentation, and event aggregation, are also common in event sequence
analysis. However, existing task frameworks often emphasize visual-
ization tasks, such as looking up data items or comparing attributes,
and do not provide a comprehensive taxonomy for data transformation
tasks. A comprehensive task framework for event sequence analysis
must take into consideration both data manipulation and visualization
tasks, and how they are integrated in the end-to-end analysis process.

2.2 Surveys and Taxonomies for Event Sequence Visual
Analysis

We identify two pieces of work on high-level tasks in event sequence
analysis. Plaisant et. al [54] propose a characterization of high-level
user tasks for event analytics, such as ‘Identify a set of records of
interest’ and ‘Compare two or more sets of records’. They also stress
the importance of task descriptions for event sequence analytics. This
work sets the stage for developing a common language for comparing
tools, and applications of event analytics. However, it does not provide
a mapping of high-level goals to low-level techniques.

Guo et al. [25] provide a comprehensive survey of visual analytics
tools for event sequence data. They review and categorize the tools by
five high-level analytical tasks (summarization, prediction & recommen-
dation, anomaly detection, comparison, and causality analysis), and ap-
plication domains targeted. They further identify seven common interac-
tion techniques for event sequence visual analytics (e.g., filter, segmen-
tation). Our work shares the motivation of Guo et al. to provide a sys-
tematic framework for understanding event sequence analysis. While
Guo et al. approach this by categorizing tool functionalities according

to high-level analytical tasks, we instead propose a hierarchical typol-
ogy that maps analytic intents to specific task strategies and techniques.

For lower-level tasks, Du et. al [14] presents 15 strategies to reduce
the volume and variety of temporal event sequence data. While these
strategies are a valuable tool set of data manipulation tactics, they do
not offer task abstractions that link user goals to system actions, nor do
they examine tasks aimed at objectives other than reducing volume and
variety (e.g., augmenting event sequences for analysis).

A recent workshop paper by Peiris et al. [49] presents a methodol-
ogy and task typology for time-stamped event sequences (TSES) that
has similarities to our work. They provide a list of 23 tasks described
in terms of the action, target, and criteria triangle. The paper has a
narrower focus on TSES which has continuous values, whereas our
work considers a broader scope including both TSES and event se-
quences with ordered events. These strategies also vary in terms of
level of abstraction. In addition, while the paper addresses the multi-
dimensional nature of tasks, it does not provide an account of tasks
across multiple levels of granularity. In section 5, we provide a com-
parison of tasks from our framework with the tasks proposed by these
three works [14, 49, 54].

3 METHOD

We adopt an iterative approach to develop the task framework based on
empirical data from literature review. Literature reviews are a widely
adopted method for task abstraction [1, 20, 70]. Our process consists of
two main stages: open coding and axial coding.

3.1 Corpus Assembly
We conducted web searches to curate papers presenting event sequence
systems published at HCI and visualization venues. A complete list of
keywords is in the supplemental materials 1. Additionally, we examined
references from Peiris et al. [49] and Guo et al. [25] to ensure compre-
hensive coverage. We conducted a first pass through titles, abstracts,
and keywords of papers from selected sources, identifying 105 papers
that potentially met our criteria for analyzing sequential data.

After the first pass, we refined our selection by including papers
that analyze event sequence data with at least one categorical attribute,
excluding those with only numerical attributes [39] or time series
data [6], as these types of datasets have different characteristics
and analysis requirements compared to categorical event sequences.
We read the full text of the marked papers to confirm they met
our inclusion criteria, resulting in 58 papers from 16 venues. The
supplemental materials include detailed information on the distribution
of papers across venues and years. We also noticed that some systems
were covered by multiple papers, such as EventAction [12, 13],
LifeLines2 [64, 65]. Thus, our final list contained 52 systems.

3.2 Open Coding
In open coding stage, we first identified paper sections with sufficient
information to describe low-level actions. These sections typically
included system descriptions. The coders carefully read through
each relevant section and split the text into micro parts, consisting of
sentences or clauses that described a single user or system action. For
example, a micro part could be “pattern mining based on MDL” or
“double-click the glyphs to expand them for detailed analysis” [10].

Each micro part was then tagged with one or more labels based on
the action(s) described. The coders used a preliminary set of labels
derived from their domain knowledge [14, 54] and expanded the set as
new actions emerged from the data. In our labeling, we paid special
attention to two issues. First, a micro part could comprise more than
one action and hence be associated with multiple labels. For instance,
the micro part “drilling down into a branch to get sub-pattern” [42]
involves two actions, filtering and segmenting. Second, a verb alone
often could not capture the richness and multi-dimensional nature of
an action, and we need to include information on the data components
associated with each action. For instance, in “user can sort page groups
alphabetically, by volume, or difference. Sorting can be performed

1All the supplemental materials are made available as an OSF project
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within a specific step or across all steps” [72], while the fundamental
action remains the same (i.e., sorting), the specific outcome of the
action can vary significantly depending on the data elements being
sorted (within a specific step or across all steps) and the conditions used
to determine the sorting order (alphabetically, by volume, or difference).

While the bottom-up coding approach provides a detailed description
of each analytic step, we recognize that data analysis is an emergent
process [15] that cannot be effectively expressed by simply accumulat-
ing discrete steps. Therefore, we also considered the holistic objectives
of each analysis, leading us to include high-level goals or objectives
as a separate level in our framework, This dual perspective ensures
our framework comprehensively represents the complex and emergent
nature of data analysis in the context of event sequence visualization.

To reduce potential bias, three authors independently performed
coding on the paper set, with a fourth author acting as a tie-breaker in
case of disagreements. The open coding process was iterative and col-
laborative, involving weekly meetings held over six months to discuss
and compare results. This ensured consistency and refinement of the
coding scheme until all disagreements were resolved.

It is important to note we focused primarily on actions that result in
observable changes in data representation or visual display; leading to
tangible transformations, such as the way data is processed, analyzed,
or presented. As such, actions that involve only cognitive processing in
humans (e.g., saw, noticed, followed, observed, visually scanned for
comparison) without any direct manifestation in the system are outside
the scope of this work. This decision ensures the coded actions have a
clear and traceable connection to system functionality.

We also omitted low-level interaction details on how an action is
accomplished through user interface. For instance, zooming can be
implemented using dedicated zoom controls (e.g., buttons, sliders,
scale), double-clicking, or through brushing. These low-level features
vary significantly across tools and are less critical for understanding
high-level tasks and actions performed by users [70].

3.3 Axial Coding

The open coding resulted in the identification of four primary dimen-
sions for each labeled micro part: action, input, output, and criteria.
For example, in “ . . . incorporate HMMs for exploring disease pro-
gression patterns from longitudinal health records” [35], the action is
extract, input is a set of sequences (health records), output is a set of
latent patterns, and the criteria is Hiddden Markov Models or HMM.
We then performed axial coding to group these labels into categories
spanning three levels: techniques, strategies, and intents. We used
affinity diagramming to organize the identified action-input-output-
criteria quartets into techniques. Through this process, we formed
clear definitions to ensure consistency, merged similar techniques, and
split compound techniques into smaller units.

Techniques: each technique is characterized by the following four
dimensions:
the action performed,
the input data or visual components acted upon,
the generated or modified output components, and
the criteria specifying the parameters or conditions associated with
the action.

We organized techniques into groups based on similarities in nature
of their action, input and output components, which led to the creation
of higher-level abstractions called strategies. For example, ‘identi-
fying common patterns’ and ‘extracting latent patterns’ in the data were
grouped under the ‘Summarize’ strategy as they both produce patterns
(output) from sequences (input), and provide a summary of the dataset.

While techniques and strategies answer ‘how’ each analysis
step is performed, they do not shed light upon ‘why’ these steps are
being executed. Therefore, we introduced an additional level of ab-
straction called intents by grouping related strategies based on the
underlying motive. For instance, the strategies ‘Summarize’ and
‘Aggregate’ are grouped under the intent of ‘Data Simplification’ as
they both seek to simplify event sequence data.

Finally, we identified overarching objectives that encompass the
entire analysis process, called objectives. These objectives guide
the design and development of strategies and techniques in the event
sequence analysis tools. For instance, earlier tools like LifeFlow [67]
and Lifeline [53] primarily facilitate pattern exploration, while subse-
quent tools such as MatrixWave [72] and Coco [45] focus on supporting
cohort comparison. DPVis [35], on the other hand, specifically aims to
model progression pathways. One system may cover multiple analysis
goals, for example, the analysis goals in Sequence Synopsis [10] are
temporal pattern exploration and correlation analysis.

4 FRAMEWORK

Our framework comprises four levels of tasks (Fig. 1). At the high-
est level, the overarching analysis objectives capture six high-level
goals that users aim to achieve: anomaly detection, stage progres-
sion, pattern exploration, prediction & recommendation, correlation &
causality analysis, and cohort comparison.

Each objective involves realizing five main types of analysis
intents: augment data, simplify data, configure data, configure visu-
alization, and manage provenance.

Each intent can be accomplished through different strategies,
depending on the data or visualization components involved and the
analysis approach. For example, the intent to simplify sequence data
can be achieved using aggregation, summarization, or segmentation.

At the most granular level, the framework defines techniques,
which are the concrete, actionable analysis steps, such as creating new
attributes, coalescing repeating events, or modifying summary patterns.
Each technique can be described via a quartet of action, input, output,
and criteria, which have been defined in Sec. 3.3.

Objectives
We identified six common high-level goals providing a broad catego-
rization of objectives encompassing the majority of the papers:
Anomaly Detection: Identifying rare or unexpected patterns or
events that deviate significantly from expected behavior. Example:
healthcare [22]

Stage Progression: Capturing evolution of processes across distinct
stages or phases within sequences, by segmenting sequences and
uncovering trends, paths, and factors influencing the transition over
time. Example: healthcare [35]

Pattern Exploration: Discovering common patterns in event
sequence data through exploratory analysis. Example: healthcare [44],
sports [68], clickstream [43], manufacturing [31]

Prediction & Recommendation: Modeling historical event sequence
data to forecast future outcomes, and provide recommendations.
Example: marketing [21], healthcare [34]

Correlation & Causality: Investigating dependencies, and po-
tential causal links between events. Example: social media [69],
healthcare [30]

Cohort Comparison: Analyzing the event sequences of different
subpopulations to identify similarities, differences, and patterns
specific to each cohort. Example: healthcare [44], social media [33]

Intents, Strategies, and Techniques
We now describe the intents, strategies, and techniques in our
task framework. Fig. 1 lists the identified intents and strategies.
Tab. 1 further elaborates on each technique along the action, input,
output, and criteria dimensions. It is important to note that the list
of techniques is not exhaustive and can be extended based on new
systems and case studies. Depending on system design and implemen-
tation, the techniques may or may not involve a visualization display
that dynamically updates with user action.

4.1 Augment Data
Data Augmentation refers to enhancing raw event sequence dataset by
adding, modifying, or deriving new components, attributes, representa-
tions, or relationships that were not initially present in the dataset.



Table 1: The action-input-output-criteria quartet characterizing techniques in our multi-level task framework. Each technique is defined by the action
performed, the input data components, the desired output components, and the criteria guiding the transformation.

Action Input Output Criteria
Obtain Event Sequence Data Embeddings/ Projections/ Attributes Statistical or machine learning algorithms, such as TF-IDF, dimensionality re-

duction technique (e.g., t-SNE)
Compute Events, Sequences, Patterns Similarity Statistical or machine learning algorithms, such as distance metric (e.g., Jaccard

Index, Levenshtein Distance)
Align Set of Sequences Aligned Sequences Common reference point (e.g., origin time), specialized alignment procedures,

(e.g., proxy event insertion, Dynamic Time Warping, shortest common superse-
quence)

Group
Set of Sequences Grouped Sequences

Event: entry event, focal event of interest
Event attribute: category, event attribute ranges
Sequence attribute: categorical & continuous
Derived: clustering, similarity to prototype
Pattern: event subsequence (milestone)

Set of Events Event Hierarchy Automated algorithms, existing hierarchical structures, regular expression or
user-defined criteria

Mutate Event, Event Attribute, Patterns, Se-
quence Attribute

Mutated sequences User-defined scenario (e.g., altered event sentiment)

Generate Sequence Next possible event Machine learning model (e.g., trained on historical event sequences)
Coalesce Sequence Simplified Sequence Repeating events of same type, frequently occurring event bundle
Combine Set of Sequences Tree/DAG Event and ancestor events
Calculate Set of Sequences, Events, Event At-

tributes, Sequence Attributes
Statistical Summary (e.g., histograms,
charts)

Statistical formulae

Extract Set of Sequences Common Patterns Mining algorithms (e.g., VMSP, Frequent Sequential Pattern, PrefixSpan, Multi-
ple Sequence Alignment)

Latent Patterns Statistical or machine learning algorithms (e.g., HMM, CP Decomposition,
hierarchical Bayesian models)

Split Sequence, Pattern Sequence or Pattern Segments Event (e.g., landmark events), pattern (e.g., milestones), derived latent stages
(e.g., content vector segmentation)
Time: fixed time intervals (e.g., year, month, day),

Modify Summary Patterns Modified Summary Patterns User domain knowledge (e.g., add/delete/edit events, merge/split patterns),
thresholds (e.g. minimum support, gap tolerances, number of hidden states)

Adjust Current data processing and mod-
elling specifications

Updated data processing and mod-
elling specifications

Setting value to parameters, (e.g., window size, similarity threshold, importance
measure, constraint/filter criteria)

Query
Set of Sequences, Patterns, Events,
Event Attributes, Sequence
Attributes

Query Output (filtered data)

Event Attribute: categorical event types, event attribute ranges, event occurrence
time, intervals, duration, derived event attribute
Sequence Attribute: categorical and continuous sequence attributes, derived
sequence properties (e.g., total duration, event count)
Pattern: subsequences, time intervals, keywords, transitions, presence/absence
of event set
Advanced querying techniques: graphical queries, regular expressions

Cross-Filter Data (e.g., Events, Event Attributes,
Sequence, Sequence Attributes, Pat-
terns) glyph in one view

Filtered Data in coordinated views Data attributes or dimension selection in other views

Display Data (e.g., event, sequence, pattern)
glyph

Detailed Information Selected data component

Drill down -
Roll up

Hierarchical data organization Detailed View (Drill down) or Sum-
mary View (Roll up)

User selected granularity

Produce Event Sequence Data Visual Representation (e.g., timeline,
graph, aggregate view, multivariate
view)

Visual encoding rules (e.g., position, size, color, shape, opacity)

Customize Visual Representation Customized Visual Representation User preferences (e.g., color palette, node size/shape, edge style, glyph design,
visual variable mapping)

Update Layout Updated layout System-specific control(e.g., comparison mode toggle, update canvas size)
Zoom View Zoomed View Zoom level
Pan View Panned View Pan direction
Highlight Marks (e.g., events, patterns, se-

quences)
visually emphasized mark (e.g.,
change in color, opacity, border,
glyph)

User selection

Select Data (e.g., Event, Event Attributes,
Sequence, Sequence Attributes, Pat-
terns) glyph

Linked Highlighting User selection and underlying data corrrespondence

Reposition Set of Sequences Repositioned Sequences Alignment event
Reorder/
Sort

Events, Event Attributes, Sequence,
Sequence Attributes, Patterns

Reordered/Sorted Components Sorting criteria (e.g., frequency, alphabetical, temporal, correlation, prediction
accuracy, attribute values, similarity, custom order)

Annotate Data glyph Annotated Representation User notes, comments, descriptions
Save/
Record

Analysis State Saved/Recorded Analysis User-specified snapshot

Insert Sequence Sequence with Marker Event User-defined timestamp



Figure 1: Our multi-level task framework consists of four hierarchical levels: objectives, intents, strategies, and techniques. We identify six
overarching objectives of event sequence analysis. Each analysis step is associated with one of the five intents, depicting the purpose of the
analysis step. Intents are realized through multiple strategies. Finally, a wide range of techniques are available for implementing each strategy.

4.1.1 DERIVE

Derive entails conducting diverse operations on event sequence data to
compute additional attributes or representations necessary for down-
stream analysis. In the data preprocessing pipeline, multiple techniques
can be sequentially employed to achieve this strategy.
Obtain Embeddings/Projections/Attributes: transforming raw event se-

quence data into a more structured, and analysis-ready format via
augmenting embeddings or projections to facilitate subsequent model-
ing, and analysis. This often involves applying statistical or machine
learning methods. For example EventThread [24] calculates TF-IDF
and creates a three-way tensor representation of sequence data. Pro-
toSteer [46] calculates event and sequence embedding, and employs
t-SNE to project the high-dimensional sequence embedding into a
lower-dimensional space.
Compute Similarity: quantifying the similarity or proximity between

events, sequences, or patterns via distance metrics. For example, Se-
quence Synopsis [10] uses Jaccard Index to calculate event similarity,
and Levenshtein distance to calculate pattern similarity.
Align Sequences: establishing correspondences between events across

multiple sequences based on a common reference point or shared seman-
tic meaning. Event sequence alignment is crucial when dealing with
variable-length sequences, inconsistent event orders, or gaps. Event
sequence tools typically align sequences using a common origin time,
such as first event. Some tools use specialized alignment algorithms,
such as EventThread2 [23] uses Dynamic Time Warping, Sequence
Braiding [5] finds the Shortest Common Supersequence.

4.1.2 ORGANIZE

ORGANIZE refers to assembling and grouping similar sequences or
events based on specific criteria or attributes.
Group Sequences: organizing event sequences into distinct groups or

clusters. Criteria for grouping include:

events, e.g., group sequences by entry event (CoreFlow [42], EventFlow
[47] ); event subsequences (milestones) or focal events of interest
(GapFlow [16])

event properties, to support attribute-based analysis, e.g., group by
categorical event types (MatrixWave [72]) or partitioning continuous
event attributes into meaningful ranges (Segmentifier [11]).

sequence-level metadata, such as demographics or other non-temporal
attributes to support analyzing population subgroups. Common meth-
ods include grouping by sequence attributes: both categorical like
gender and numerical like age (TipoVis [26]); or derived sequence
properties like total duration, event count (SessionViewer [36]).

clustering on derived attributes, involves attribute-based grouping de-
rived as discussed in 4.1.1. Sequence Synopsis [10] clusters sequences
mapping to the same pattern. EventThread [24], groups sequence
segments by cluster similarity.

Create Event Hierarchy: combining available event types into higher-
level categories or meta-events based on semantic similarity, hierarchi-
cal relationships, or user-defined criteria. The definition of event cate-
gories can vary based on criteria, such as: automated algorithms (e.g.,
Cadence [19]), existing hierarchical structures (e.g., MatrixWave [72],
Segmentifier [11]), regular expression (e.g., Eventpad [8]) or user-
defined criteria (e.g., Patterns and Sequences [43], Eloquence [63]).

4.1.3 SIMULATE
Simulate refers to generating hypothetical or predictive scenarios, en-
abling users to analyze the potential outcomes, dependencies, and
implications of different events or patterns.
Mutate Components: altering specific components or properties to sim-

ulate and analyze alternative scenarios, enabling what-if analysis. In
OpinionFlow [69], the impact of changing event attributes can be ob-
served on downstream events via adjusting tweet sentiment.
Generate Next Possible Events: predicting the likelihood of future

events based on patterns observed in historical event sequences through
machine learning models. Generating next possible events enables
analysts to anticipate future outcomes, plan for potential scenarios, and
make data-driven decisions (OpinionFlow [69]).

4.2 Simplify Data
Data Simplification refers to reducing the complexity or scale of an
event sequence dataset to make it more amenable to automated process-
ing or human inspection.

4.2.1 AGGREGATE
Aggregate involves replacing multiple events with a single representa-
tive event, reducing the number or type of events in the visualization.
Coalesce Repeating Events into One: merging consecutive events

within a sequence into a single representative event. The merging can be
done by selecting one event as representative and discarding duplicates
(e.g., Segmentifier [11]), or by creating a new event that encompasses
the duration or attributes of the merged events (e.g., EventFlow [47]).
Combine Events across Sequences: aggregating similar events across

multiple sequences and organizing them into a hierarchical or graph-
based structure, such as a tree (e.g., EvenFlow [47]) or a directed acyclic
graph (DAG) (e.g., Sankey diagram). This transformation provides a
more compact representation of the event sequences.

4.2.2 SUMMARIZE
Summarize involves generating a concise overview of the entire dataset
or its selected subsets. The process includes computing statistical
distributions to present the data in an easily understandable form or
applying algorithms to extract representative patterns. The primary goal
of summarization is to provide a high-level understanding of the key
characteristics and statistical properties without being overwhelmed by
the full complexity of the data.
Calculate Distribution: apply statistical methods to form mathemat-

ical summaries of event sequences, enabling both confirmatory and



exploratory analysis. These summaries encompass metrics on distri-
butions and probabilities over event sequence attributes. Examples
include histograms (e.g., Segmentifier [11], Cadence [19]), type dis-
tributions (e.g., SessionViewer [36]), and inter-arrival times between
event types (e.g., EventFlow [47])
Extract Common Patterns: algorithmically extracting frequently occur-

ring subsequences based on events that are present in the data. Ex-
amples include temporal pattern mining techniques, such as recursive
branching pattern mining (e.g., CoreFlow [42]), VMSP (e.g., Patterns
and Sequences [43], MAQUI [38]), Frequent Sequential Pattern (e.g.,
SentenTree [28]), PrefixSpan (e.g., Eloquence [63]), or Multiple Se-
quence Alignment (e.g., EventPad [8]).
Extract Latent Patterns: using statistical or machine learning meth-

ods to discover hidden sequential structures and trends implicitly em-
bedded within event sequences. Examples include probabilistic meth-
ods, such as Hidden Markov Models (e.g., DPVis [35]), Algorithms
like hierarchical Bayesian Rose Tree models (e.g, OpinionFlow [69])
to group sequences with similar semantic content.

4.2.3 SEGMENT
Segment refers to breaking down lengthy sequences into smaller, more
manageable segments based on specific criteria or temporal boundaries.
Split Sequences or Patterns: decomposing event sequences into

meaningful subsequences or segments. Criteria for splitting include:

temporal folding, dividing large-scale event sequence data collected
over extended periods into segments of fixed time intervals, such as a
year, a month, or a day) (e.g., EventThread [24], STBins [55]).

key event, dividing sequences into pre- and post-event segments to
analyze antecedent and sequelae patterns relative to the key event (e.g.,
MAQUI [38], EventThread [24]), or segmenting sequences based on
the presence or absence of a key event or pattern to compare alternative
trajectories ( e.g., DecisionFlow [17], MAQUI [38])

derived attributes, such as content vector segmentation (e.g., Event-
Thread2 [23]).

dynamic splitting of segments with a shared pattern ( e.g., CoreFlow
[42], Patterns & Sequences [43]).

4.3 Configure Data
Configuring Data comprise modifying and experimenting with different
components, properties, and granularity of an event sequence dataset
for exploration, aiming to identify the optimal amount of data required
for subsequent analysis.

4.3.1 REFINE
Refine refers to iteratively improving or fine-tuning the analysis data
based on domain knowledge, or evolving requirements. Refinement
enables progressive adjustments of analysis outcomes, incorporating
user expertise and insights to obtain precise and meaningful results.
Modify Summary: supporting modifications and calibrations of system-

generated summarized representations or patterns, enabling users
to incorporate their domain knowledge. Users can iteratively fine-
tune the automatically generated summaries until they are satisfied
with the representation. Examples of modification operations include
adding/deleting/editing events in patterns (e.g., ProtoSteer [46]), and
merging/splitting patterns (e.g., EventThread2 [23]). Summaries pro-
duced by extracting common patterns (4.2.2) can be calibrated using
minimum support thresholds and gap tolerances. Similarly, summaries
generated from extracting latent patterns (4.2.2) can be customized by
controlling the number of hidden states.
Adjust Parameters: fine-tuning parameters that affect data processing

and modeling, without directly manipulating the visual representation
itself. Users can adjust various parameters, including temporal settings
(e.g. window size or duration in STBins [55]), grouping settings (e.g.,
similarity measure thresholds in EventThread [24]), aggregation set-
tings (e.g., importance measures for grouping events in Cadence [19]),
constraint/filtering parameters (e.g., toggling rules in EventPad [8] or
modifying constraints in Eloquence [63]).

4.3.2 INCLUDE-EXCLUDE

Include-Exclude refers to controlling the subset of event sequence data
under consideration, enabling users to focus on relevant subsets and
eliminate irrelevant information during analysis.
Execute Dynamic Queries: refer to applying filters, selections, or search

criteria to retrieve matched subset. Dynamic queries span various
components of event sequence data and visual elements, including
filtering by event types, categories, or attributes (e.g., Cadence [19],
EventPad [8]), selecting specific subsequences, stages, or time intervals
(e.g., DPVis [35], Segmentifier [11]), searching for keywords or patterns
(e.g., ProtoSteer [46], Eloquence [63]), filtering based on sequence
attributes (e.g., Sequence Braiding [5], Eloquence [19]), filtering based
on transitions (e.g., DPVis [35]), querying for the presence or absence
of specific events, milestones, or patterns (e.g., Eloquence [63]), and
applying advanced querying techniques such as graphical queries, or
regular expressions (e.g., Cadence [19], EventFlow [47]).
Cross-filter Components: applying filters in one view and automati-

cally updating other coordinated views. By applying filters or selec-
tions in one context and observing the immediate impact on related
contexts, analysts can gain insights into how different data attributes or
dimensions correlate. Examples include cross-filtering via interactions
(OpinionFlow [69], MAQUI [38]) or query languages (DPVis [35]).

4.3.3 ABSTRACT-ELABORATE

Abstract-Elaborate involves interactively adjusting the level of detail,
granularity, or abstraction of event sequence data representation. This
strategy enables dynamic exploration of different levels of abstraction,
from high-level overviews to detailed, fine-grained representations.
Details-on-Demand: providing users with additional information about

specific event sequence components upon interaction. This technique
helps analyst gain insights into specific aspects while maintaining the
overall context. This information can be presented in various forms,
such as: tooltips (e.g., Segmentifier [11]), sidebar (e.g., STBins [55],
OutFlow [66]), separate information panels (e.g., Sequence Braiding
[5], EventPad [8]) or Expanded views (e.g., DPVis [35]).
Drill down-Roll up: supporting data navigation at various levels of

detail. transitioning between detailed, lower-level representations (drill
down) and summarized, higher-level abstractions (roll up). For exam-
ple, Lifeline [53] provides semantic zooming to expand desired facets
(low-level abstraction), and use silhouettes and shadows when full
details can’t be shown on the overview (high-level abstraction). The
technique is facilitated by underlying hierarchical data organization.
Implementation ideas include showing or hiding labels or annotations
(e.g., Eloquence [63], OpinionFlow [69]), creating a new context view
(e.g., EventPad [8], Patterns and Sequences [43]) or modifying the
layout (e.g., LifeLines [53]) to accommodate new level of detail.

4.4 Configure Visualization

Configuring visualization refers to modifying and adjusting different
visual properties, and layouts of an event sequence visualization to
explore alternative representations, and enhance the communication of
insights. Visual configuration allows users to tailor the visualization to
their perceptual preferences and storytelling needs.

4.4.1 VISUALIZE

Visualize refers to applying or updating rules that map data to visual
marks or mark properties, creating graphical representations.
Produce Visual Representation: converting sequences and associated

attributes into visual forms that effectively communicate patterns, rela-
tionships, and insights. The generated visual representations leverage
various visual elements, such as timelines, graphs, charts, glyphs, and
diverse color schemes, to convey the structure, temporal dynamics, and
characteristics of the event sequences.

The data elements are mapped to visual channels such as position,
size, color, shape, or opacity. The choice of visual encodings depends
on the nature of the data, the analysis goals, and the desired level
of detail or abstraction. A detailed description of all kinds of visual



representation in beyond the scope of this work, and has been covered
extensively in prior works [29, 73].
Customize Visual Encoding: directly modifying visual representations

of event sequences and associated attributes. The primary focus is en-
hancing readability, interpretability, and communication of insights by
aligning visual representations with user preferences or analysis goals.

Customization may include visual encoding adjustments such as
line thickness or spacing (e.g., sequence braiding [5]), selecting dif-
ferent visual designs (e.g., ActiviTree [62], STBins [55]), adjusting
transparency levels (e.g., Eloquence [63]), changing canvas size (e.g.,
CoreFlow [42]), selecting color palettes (e.g., Eloquence [63]), defining
node shapes, edge styles, or glyph designs.
Update Layout: adapting the presentation mode of an event sequence

visualization to accommodate diverse analysis requirements. It involves
adjusting layout parameters, such as canvas dimensions (e.g., CoreFlow
[42]) or visualization modes (e.g., (s|q)ueries [71], ProtoSteer [46]).

4.4.2 NAVIGATE
Navigate depicts interactively exploring and modifying viewport or vis-
ible area of a visualization to focus on specific regions or time periods.
Zoom: dynamically adjusting the magnification level within a single,

consistent view. Zooming enables multi-scale exploration to ensure
readability and clarity of the displayed information. Visualization tools
may employ animated transitions or progressive loading to enhance
the zooming experience. Users can initiate the zooming action through
dedicated zoom controls (e.g., MatrixWave [72], LifeLines2 [64])
Pan: interactively exploring different parts of the displayed event

sequences by shifting the viewport. Panning enables inspection of
lengthy or complex sequences in a continuous and fluid manner without
losing context. Usually, horizontal panning shifts the visible area along
the time axis, revealing the temporal progression and relationships
among events (e.g., LifeLines2 [64], MatrixWave [72]). Some tools
also support vertical panning, especially when dealing with a large
number of sequences (e.g., EventPad [9]).

4.4.3 FOCUS
Focus denotes visually emphasizing specific elements, patterns, or sub-
sets of interest, guiding user attention towards the emphasized element.
Highlight Marks: emphasizing or accentuating specific components of

interest within the visualization. This involves applying distinct visual
attributes or effects to the selected marks, such as changing color (e.g.,
SentenTree [28]), opacity (e.g., MatrixWave [72], SentenTree [28]),
adding border (e.g., Lifelines [53], Patterns and Sequences [43]), or
using visual cues like glyphs (e.g., TipoVis [26]) or annotations.
Select & Link Components: synchronized selection and highlighting

of elements across different views. By visually connecting related
elements across views, linked selection helps users gain a holistic
understanding. For example, in Sequence Synopsis [10] selecting a
pattern in the summary view highlights individual sequences containing
the pattern in the detailed view. In DecisionFlow [17], selection of an
event in other panels remain consistent across pattern panel.

4.4.4 REARRANGE
Rearrange depicts changing the spatial arrangement or positioning of vi-
sual items within the visualization layout. It involves modifying the or-
der of visual elements to improve overall readability and interpretability.
Reposition Sequences: changing the visual arrangement by centering

sequence layout around a specific event of interest, facilitating explo-
ration of temporal relationships before and after the alignment point.
Repositioning can help uncover insights that may be obscured in default
configuration. This technique is often accompanied by an animated
transition for smooth user experience (e.g., Sequence Synopsis [10]).
Reorder/Sort Components: reordering the displayed components, in as-

cending or descending order. Sorting across multiple attributes is
possible, with primary criteria taking precedence and subsequent ones
breaking ties or refining the ordering. Sorting can be performed on
subsets, such as sorting sequences within a cluster, events within a time
range, or attributes within a category.

There is a wide range of sorting criteria, including, frequency (Life-
Flow [67]), number of occurrences (TipoVis [26]), rarity (EventPad [8]),
similarity (Sequence Synopsis [10]), alphabetical order (MatrixWave
[72]), average time to previous event (LifeFlow [67]), correlation with
outcome (Cadence [19]), accuracy or performance (ProtoSteer [46]),
attribute values (quantitative) (Sequence Braiding [5]), attribute name
(qualitative) (TipoVis [26]), custom (MatrixWave [72]).

4.5 Manage Provenance

Provenance encapsulates tracking, recording, and managing the history
of data states, insights, and actions throughout exploration and analysis.
It involves documenting applied transformations and their validations,
result interpretations, and decision-making processes. The aim is to
ensure transparency, reproducibility, and trustworthiness of analysis re-
sults by providing a comprehensive trail of the steps taken, assumptions
made, and conclusions drawn.

4.5.1 DOCUMENT

Documenting involves providing the means to create, manage, and
organize insights or metadata associated with analysis.
Annotate Components: providing mechanisms to add textual notes, com-

ments, or descriptions to specific elements, subsets, or regions of the
visualized data. This allows users to document their findings, insights,
hypotheses, or any relevant information discovered during the analy-
sis process. Annotation facilitates collaboration, knowledge sharing,
enabling future reference (e.g., SessionViewer [36]).
Save/ Record Analysis: storing specific snapshots of the analysis pro-

cess for future reference or further investigation. Save/Record enables
iterative analysis, and ensures reproducibility. This technique enables
users to create a record of their analytical progress (e.g., Segmenti-
fier [11], ProtoSteer [46]), key findings, or interesting subsets of the
data (e.g., EventPad [8], DPVis [35]),as well as design preferences (e.g.,
Eloquence [63]) facilitating the ability to resume the analysis at a later
time, or compare different stages of the exploration.
Insert New Marker Event: manual insertion of new events at specific

points within existing event sequences. These user-defined events,
known as marker events, serve as reference points deemed significant by
the users for analysis or interpretation (e.g., EventFlow [47], GapFlow
[16]). By creating new marker events, users can enrich the event
sequences with additional contextual information.

5 EVALUATION OF THE FRAMEWORK

In this section, we evaluate existing task taxonomies through case
studies. We then discuss future work to investigate the framework’s
evaluative and generative powers.

5.1 Descriptive Power

To showcase the descriptive power of our multi-level task framework,
we apply our framework and three existing frameworks [14, 49, 54]
to analyze real-world case studies reported in the literature. We use
the following criteria to choose the case studies: 1) they should cover
different application domains and analysis objectives, 2) are preferably
published in recent years to reflect current challenges, and 3) are prefer-
ably not included in our coding and derivation of the framework. Based
on these criteria, we chose the following three case studies: C1: causal-
ity in electronic health records from SeqCausal [30], C2: tennis tactics
analysis from RASIPAM [68], C3: neonatal data similarity analysis
from FlexEvent [41].

C1 and C3 both were conducted in the healthcare domain, but they
address different objectives: “Correlation & Causality” (C1) vs.
“Pattern Exploration” (C3). Conversely, C2 and C3, though addressing
the same objective (“Pattern Exploration”), come from different do-
mains: healthcare (C3) and sports analytics (C2). All the selected case
studies were published in the last three years: C1 (2021), C2 (2022),
and C3 (2023). Among these three, only the paper for C1 is included
in our original corpus, while papers for C2 and C3 are not part of the
original corpus. The total number of tasks is 25 across the case studies



Table 2: Comparative analysis of task mappings for three case study excerpts from SeqCausal [30], RASIPAM [68] and FlexEvent [41] using our
multi-level task framework and existing task taxonomies (Plaisant et al. [54], Du et al. [14], Peiris et al. [49]). The color scheme indicates the level of
alignment: no match and partial match. Our framework demonstrates more comprehensive mapping compared to existing taxonomies

Tasks C1.T1 [30] C1.T3 [30] C1.T7 [30] C2.T7 [68] C2.T9 [68] C3.T7 [41]
Excerpt The doctors queried a

group of 127 middle-
aged patients aging from
50 to 60 who were diag-
nosed with pneumonia.

After several iterations of
confirming causalities and
model updates, . . .

The doctors saved the final
causality to the analysis his-
tory view.

E2 re-ranked the tactics
in Tactic View based on
the tactical importance
. . .

Experts applied this merg-
ing adjustment and ob-
tained a more accurate es-
timate of the win rate for
this serving tactic.

Changing the color at-
tribute to sepsis, . . .

Plaisant
et al.
[54]

Prepare or select data for
further study
Identify a set of records
of interest

Prepare or select data for
further study
Review data quality and
inform choices to be made
in order to model the data

n/a Prepare or select data for
further study
Identify a set of records
of interest

Prepare or select data for
further study
Review data quality and
inform choices to be made
in order to model the data

n/a

Du
et al.
[14]

Extraction Strategies
Goal-Driven Record Ex-
tracting

n/a n/a n/a n/a n/a

Peiris
et al.
[49]

action: Filter
target: Event Sequences
criteria: Metadata At-
tributes

action: Derive Metrics
target: n/a
criteria: n/a

action: Annotate
target: n/a
criteria: n/a

action: Sort/Rank
target: Event Sequences
criteria: Metrics/Features

action: Add/Modify
target: Event Sequences
criteria: Metrics/Features

n/a

Ours Intent: Configure Data
Strategy: Include-
Exclude
Technique: Execute
Dynamic Queries
action: Query
input: Event Sequences
output: Filtered Event
Sequences
criteria: Age

Intent: Configure Data
Strategy: Refine
Technique: Adjust Param-
eters
action: Adjust
input: Current causal
model
output: Updated causal
model
criteria: Domain knowl-
edge

Intent: Manage Provenance
Strategy: Document
Technique: Save/Record
Analysis
action: Save/Record
input: Analysis State
output: Saved/Recorded
Analysis
criteria: User-specified
snapshot

Intent: Configure Visual-
ization
Strategy: Rearrange
Technique: Reorder/Sort
Components
action: Reorder/Sort
input: Tactics
output: Reordered Tac-
tics
criteria: Tactical impor-
tance metric

Intent: Configure Data
Strategy: Refine
Technique: Modify Sum-
mary
action: Modify
input: Tactics
output: Modified Tactics
criteria: Domain knowl-
edge

Intent: Configure Vi-
sualization
Strategy: Visualize
Technique: Produce
Visualization
action: Produce
input: Event sequence
data
output: Visual repre-
sentation
criteria: Visual encod-
ing rules

For each case study, we coded the analysis process using our frame-
work and three existing frameworks. Two authors independently per-
formed the coding for each case study across all four frameworks, then
compared results and reached a consensus through discussion. This
thorough examination demonstrates our framework’s ability to com-
prehensively describe and characterize complex tasks and workflows.
Here we present some key examples from the case studies. The full
coding is added to the supplemental materials.

5.1.1 Takeaways from Three Case Studies
The comparative analysis of task mapping across the three case studies
reveals several key differences among the approaches. We present six
example mappings from the case studies in Tab. 2.

Granularity and Specificity: Plaisant et al.’s taxonomy [54] provides
only high-level descriptions of tasks, lacking low-level details that cap-
ture individual steps of analysis workflows. This limitation becomes
evident when diverse low-level actions, such as grouping, sorting and
filtering, are required to accomplish the same high-level task, e.g.,
‘Identify a set of records of interest ’ (C1.T1, C2.T7).
Similarly, Peiris et al.’s taxonomy [49] exhibits limitations in granu-
larity for certain tasks, indicating the need for a more comprehensive
and precise task framework. For example, both updating a model
and performing dimensionality reduction tasks are mapped to action
‘Derive Metrics’ (C1.T3). This mapping fails to capture the distinct
nature of these tasks, as updating a model involves refining an existing
model, while dimensionality reduction focuses on projecting data to
a lower-dimensional space. In contrast, our framework captures this
complexity through two levels of abstraction: ‘Refine’ as strategy, and
‘Adjust Parameters’ as technique for model update, and ‘Derive’ as
strategy and ‘Obtain Embeddings/Projections/Attributes’ as technique
for dimensionality reduction (C1.T3). These mappings align more
closely with the actual tasks performed in the respective case studies.

Comprehensiveness: Du et al.’s strategies [14] primarily addresses
tasks related to reducing volume and variety, limiting their applicability
to the full range of tasks involved in event sequence analysis. This
narrow scope is apparent: tasks such as updating models, managing
provenance, grouping sequences and refinement of the analysis are not

captured by their strategies (C1.T3-C3.T7).
In contrast, our framework captures tasks that are not adequately repre-
sented in the other taxonomies, showcasing its compatibility in covering
the end-to-end tasks involved in event sequence analysis.
However, It is important to acknowledge our technique list is not ex-
haustive, leaving room for extension. This is evident in Task C3.T6 in
the supplemental materials (Table 3), where our framework identifies
only a partial match. In this specific task, the grouping operation is
being conducted on projection embeddings rather than event sequences.
While our framework correctly identifies the action as ‘Group’, it does
not provide a perfect match for the input of the grouping operation.
Triplet vs. Quartet: Peiris et al. [49] mention criteria as a data
component, limiting its ability to fully address the how aspect of task
characterization. In contrast, criteria in our framework may capture
both the methods and conditions of an action, offering a more complete
characterization of how tasks are performed. Additionally, their action-
target-criteria triplet lacks an output component, obscuring important
details about the results. For instance, when analyzing summary
patterns, it is crucial to discern whether these patterns are directly
observable or represent latent structures requiring further interpretation.
Our framework includes the output component, precisely distinguishing
latent and common patterns. Another notable difference is the handling
of targets and criteria. Peiris et al. categorize four target types and five
criteria types. However, we believe that input (analogous to targets) and
criteria are too expansive to be limited to a predefined set of elements.

The comparative analysis of the task taxonomies across the three
case studies highlights the strengths of our multi-level task framework.
By encompassing a broad spectrum of tasks, our framework enables a
holistic tracing of the event sequence analysis workflow.

5.2 Evaluative Power
Our framework lays the foundation for structured evaluation of the
effectiveness and completeness of event sequence analysis tools across
diverse domains. Researchers can compare their capabilities by aligning
the supported objectives, intents, strategies, and techniques
of each tool to our framework levels, identifying commonalities, dif-
ferences, and potential gaps. This comparative analysis can reveal



strengths and limitations of individual tools and highlight areas for im-
provements. Moreover, the framework can provide a base for defining
evaluation criteria and metrics to assess performance and usability.

Further research and validation are necessary to fully establish the
framework’s evaluative capabilities. While the framework provides a
comprehensive structure for assessment, its effectiveness in practice
needs to be demonstrated through case studies and applications in
diverse domains, which are beyond the scope of this paper.

5.3 Generative Power
Similar to Brehmer and Munzner’s typology [7], our framework has
the potential to guide practitioners through the ‘discover’ and ‘design’
stages of design studies [58]. Practitioners can translate their domain
problems into abstract task descriptions by utilizing the objectives
outlined in our framework, therefore identifying high-level analysis
goals that need to be supported.

The hierarchical nature of our framework also allows practitioners to
focus on high-level intents without worrying about low-level details.
For example, if the dataset is large and complex, the initial analysis
steps may require “Data Simplification” to make the data more manage-
able. Similarly, if the analysis goal is “Prediction & Recommendation”,
practitioners should consider if data augmentation is necessary first.

Once an intent has been identified, our framework offers an array of
strategies to support these intents based on data characteristics.
For instance, both ‘Include-Exclude’ and ‘Abstract-Elaborate’ strategies
cater to the ‘Configure Data’ intent, yet they serve different purposes.
This flexibility enables practitioners to tailor the data configuration to
the specific demands of the analysis step. In addition, if practitioners
have already started exploring certain strategies without considering the
higher-level intents, our framework can be useful for them to exam-
ine alternative strategies that fulfill the same intent in different ways.

Finally, based on the input and desired output of each analysis
step, practitioners can choose the specific action and criteria from
the techniques defined in our framework. The action-input-output-
criteria quartet provides a structured approach to selecting the most
suitable technique for each analysis step.

We plan to enhance the generative power of our framework by devel-
oping a formal specification in future. This structured representation
will enable automated generation of task-specific design recommenda-
tions and validation of event sequence analysis tool designs.

6 LIMITATIONS

While our framework provides a structured examination of event
sequence visual analytic tasks, it is important to acknowledge certain
limitations. First, the framework is derived from existing research and
aims to capture a broad spectrum of tasks supported by various systems.
However, we do not claim it to be exhaustive. As research advances,
the framework will need to be revised and enhanced, incorporating ad-
ditional strategies and techniques. The taxonomy should be viewed as
a living document to be expanded and refined as new methods emerge.

Second, the boundaries between categories in any classification ef-
fort can be fuzzy and subject to multiple interpretations. For instance,
at the objectives level, “Stage Progression” can be interpreted as
a type of pattern, and may be subsumed under “Pattern Exploration”.
We decided to keep these two categories separate because “Stage Pro-
gression” involves segmenting sequences and tracking the progression
across different segments. In contrast, “Pattern Exploration” focuses on
identifying recurring patterns across sequences that may not involve
segmentation. At the intents level, categories such as “Configure
Data” and “Configure Visualization” can overlap significantly. For
example, zooming in on a visualization not only adjusts the visual
representation but also acts as a filter on the underlying data. This over-
lap demonstrates the interconnected nature of data manipulation and
visualization configuration, posing challenges in distinct categorization.

In the same light, the distinction between “Simplify Data” and “Con-
figure Data” can be blurry, as simplification can be seen as a subset of
configuration. We differentiate these two intents because data reduction
is a crucial aspect of event sequence analytics [73]. Strategies listed un-
der “Simplify Data” focus on performing data reduction computations,

while “Configure Data” is about dynamically choosing which aspects
of data should be the focus of the current inspection.

The distinction between “Aggregate” and “Summarize”
strategies is another example of potential contention. “Ag-
gregate” involves merging multiple events without reducing the number
of sequences or unique events. In contrast, “Summarize” focuses on
extracting representative subsequences or patterns, potentially creating
a lossy presentation by excluding rare events. The boundary between
these strategies can be subtle, as one may argue that aggregation is
one way to summarize.

At the techniques level, the term “Alignment” is used in the lit-
erature to refer to both visual and data configuration. In our framework,
alignment falls under the “Augment Data” intent, focusing on data
alignment operations such as establishing correspondences between
events across multiple sequences based on a common reference
point. This is conceptually similar to sequence alignment in fields
like genomics [4, 40]. Nevertheless, alignment can also be a visual
operation, involving repositioning of event sequences in a visualization
(e.g., [43, 47]). To avoid confusion, we have used the term “Reposition
Sequences” under “Configure Visualization” intent to describe such
visual alignment actions. While this distinction helps maintain clarity
within our framework, we acknowledge that our definition of the term
may differ from its typical usage in visualization literature.

These complexities underscore the evolving nature of our frame-
work and the inherent challenges in categorizing diverse strategies and
techniques. While we strive to provide a structured framework, some
aspects defy clear-cut classification.

Third, our literature review was extensive but did not follow a
formal systematic review process like PRISMA [48] in the healthcare
domain, which ensures rigorous and reproducible examination. Future
work could benefit from adopting such systematic approaches to
minimize the risk of gaps and biases.

Despite these limitations, we believe our framework takes an im-
portant step towards advancing the understanding of event sequence
analysis tasks, setting the stage for future research and innovation.

7 DISCUSSION AND FUTURE WORK

Our framework establishes a theoretical basis for characterizing a di-
verse range of tasks in event sequence analysis. Its hierarchical organi-
zation, from high-level strategies to low-level techniques, enables
domain adaptation and knowledge transfer, by providing a common
vocabulary for describing and comparing tasks across applications.

A promising direction for future work involves developing formal
specifications based on our framework. Task specifications hold
potential for constructing automated analysis pipelines and provenance.
Formal specifications can facilitate creation of intelligent assistance
tools that suggest appropriate techniques and effective analysis
workflows based on analysis objectives and dataset characteristics.

Another consideration is integrating data properties in the framework.
Data characteristics, such as size, complexity, and heterogeneity, can
impact both the choice of high-level intents and strategies as well as
the performance of low-level operations. By analyzing the implications
of data properties on these operations, researchers can develop more
targeted and efficient analysis strategies.

These ideas for future work can pave the path towards creating
executable benchmarks for tool evaluation [52]. By formalizing exist-
ing case studies along with associated objectives and techniques,
researchers can develop standardized datasets and evaluation protocols.
8 CONCLUSION

We present a multi-level framework to describe the objectives,
intents, strategies, and techniques in event sequence visual
analytics. Compared to existing event sequence task taxonomies, our
framework enables more precise descriptions of tasks at multiple levels
of granularity, and along multiple dimensions such as the action, input,
output, and criteria associated with each technique. The framework
has the potential to promote knowledge transfer and generalization
across domain-specific investigations, and lays the foundation for fu-
ture research on formal specification languages and analysis strategy
recommendations for event sequence data.
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